917 research outputs found

    The Sound of Sonoluminescence

    Full text link
    We consider an air bubble in water under conditions of single bubble sonoluminescence (SBSL) and evaluate the emitted sound field nonperturbatively for subsonic gas-liquid interface motion. Sound emission being the dominant damping mechanism, we also implement the nonperturbative sound damping in the Rayleigh-Plesset equation for the interface motion. We evaluate numerically the sound pulse emitted during bubble collapse and compare the nonperturbative and perturbative results, showing that the usual perturbative description leads to an overestimate of the maximal surface velocity and maximal sound pressure. The radius vs. time relation for a full SBSL cycle remains deceptively unaffected.Comment: 25 pages; LaTex and 6 attached ps figure files. Accepted for publication in Physical Review

    Microscopic Analysis of the Non-Dissipative Force on a Line Vortex in a Superconductor: Berry's Phase, Momentum Flows and the Magnus Force

    Full text link
    A microscopic analysis of the non-dissipative force Fnd{\bf F}_{nd} acting on a line vortex in a type-II superconductor at T=0T=0 is given. We first examine the Berry phase induced in the true superconducting ground state by movement of the vortex and show how this induces a Wess-Zumino term in the hydrodynamic action ShydS_{hyd} of the superconducting condensate. Appropriate variation of ShydS_{hyd} gives Fnd{\bf F}_{nd} and variation of the Wess-Zumino term is seen to contribute the Magnus (lift) force of classical hydrodynamics to Fnd{\bf F}_ {nd}. This first calculation confirms and strengthens earlier work by Ao and Thouless which was based on an ansatz for the many-body ground state. We also determine Fnd{\bf F}_{nd} through a microscopic derivation of the continuity equation for the condensate linear momentum. This equation yields the acceleration equation for the superflow and shows that the vortex acts as a sink for the condensate linear momentum. The rate at which momentum is lost to the vortex determines Fnd{\bf F}_{nd} and the result obtained agrees with the Berry phase calculation. The Magnus force contribution to Fnd{\bf F}_{nd} is seen to be a consequence of the vortex topology. Preliminary remarks are made regarding finite temperature extensions, with emphasis on its relevance to the sign anomaly occurring in Hall effect experiments done in the flux flow regime.Comment: 40 pages, RevTex, UBCTP-94-00

    Berry's Phase in the Presence of a Stochastically Evolving Environment: A Geometric Mechanism for Energy-Level Broadening

    Get PDF
    The generic Berry phase scenario in which a two-level system is coupled to a second system whose dynamical coordinate is slowly-varying is generalized to allow for stochastic evolution of the slow system. The stochastic behavior is produced by coupling the slow system to a heat resevoir which is modeled by a bath of harmonic oscillators initially in equilibrium at temperature T, and whose spectral density has a bandwidth which is small compared to the energy-level spacing of the fast system. The well-known energy-level shifts produced by Berry's phase in the fast system, in conjunction with the stochastic motion of the slow system, leads to a broadening of the fast system energy-levels. In the limit of strong damping and sufficiently low temperature, we determine the degree of level-broadening analytically, and show that the slow system dynamics satisfies a Langevin equation in which Lorentz-like and electric-like forces appear as a consequence of geometrical effects. We also determine the average energy-level shift produced in the fast system by this mechanism.Comment: 29 pages, RevTex, submitted to Phys. Rev.

    From Sensing to Action: Quick and Reliable Access to Information in Cities Vulnerable to Heavy Rain

    Get PDF
    Cities need to constantly monitor weather to anticipate heavy storm events and reduce the impact of floods. Information describing precipitation and ground conditions at high spatio-temporal resolution is essential for taking timely action and preventing damages. Traditionally, rain gauges and weather radars are used to monitor rain events, but these sources provide low spatial resolutions and are subject to inaccuracy. Therefore, information needs to be complemented with data from other sources: from citizens' phone calls to the authorities, to relevant online media posts, which have the potential of providing timely and valuable information on weather conditions in the city. This information is often scattered through different, static, and not-publicly available databases. This makes it impossible to use it in an aggregate, standard way, and therefore hampers efficiency of emergency response. In this paper, we describe information sources relating to a heavy rain event in Rotterdam on October 12-14, 2013. Rotterdam weather monitoring infrastructure is composed of a number of rain gauges installed at different locations in the city, as well as a weather radar network. This sensing network is currently scarcely integrated and logged data are not easily accessible during an emergency. Therefore, we propose a reliable, efficient, and low-cost ICT infrastructure that takes information from all relevant sources, including sensors as well as social and user contributed information and integrates them into a unique, cloud-based interface. The proposed infrastructure will improve efficiency in emergency responses to extreme weather events and, ultimately, guarantee more safety to the urban population

    In vitro production of two chitinolytic proteins with an inhibiting effect on the insect coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae) and the fungus Hemileia vastatrix the most limiting pests of coffee crops

    Get PDF
    Two genes from Streptomyces albidoflavus, one exochitinase (905-bp) and an endochitinase (1100-bp) were functionally expressed in Escherichia coli in form of a fusion protein with a maltose binding protein (MBP). The goal was to produce and test proteins that inhibit both the coffee berry borer insect Hypothenemus hampei and the coffee rust fungus Hemileia vastatrix. Both recombinant proteins MBP/exochitinase and MBP/endochitinase showed chitinolytic activity. When recombinant purified proteins were added to an artificial coffee-based diet for the coffee berry borer, MBP/exochitinase at a concentration of 0.5% W/W caused delayed growth of larvae and 100% mortality between days 8 and 15, while MBP/endochitinase caused 100% mortality at day 35. H. vastatrix urediniospores presented total cell wall degradation in their germinative tubes within 18 h of exposure to the proteins at enzyme concentrations of 5 and 6 mg ml-1, with exochitinase having the greatest effect. The dual deleterious effect of S. albidoflavus chitinases on two of the most limiting coffee pests worldwide, the coffee borer and the coffee rust, make them potential elements to be incorporated in integrated control strategies

    Critical scales to explain urban hydrological response: An application in Cranbrook, London

    Get PDF
    Rainfall variability in space and time, in relation to catchment characteristics and model complexity, plays an important role in explaining the sensitivity of hydrological response in urban areas. In this work we present a new approach to classify rainfall variability in space and time and we use this classification to investigate rainfall aggregation effects on urban hydrological response. Nine rainfall events, measured with a dual polarimetric X-Band radar instrument at the CAESAR site (Cabauw Experimental Site for Atmospheric Research, NL), were aggregated in time and space in order to obtain different resolution combinations. The aim of this work was to investigate the influence that rainfall and catchment scales have on hydrological response in urban areas. Three dimensionless scaling factors were introduced to investigate the interactions between rainfall and catchment scale and rainfall input resolution in relation to the performance of the model. Results showed that (1) rainfall classification based on cluster identification well represents the storm core, (2) aggregation effects are stronger for rainfall than flow, (3) model complexity does not have a strong influence compared to catchment and rainfall scales for this case study, and (4) scaling factors allow the adequate rainfall resolution to be selected to obtain a given level of accuracy in the calculation of hydrological response

    Spectral Flow, Magnus Force and Mutual Friction via the Geometric Optics Limit of Andreev Reflection

    Full text link
    The notion of spectral flow has given new insight into the motion of vortices in superfluids and superconductors. For a BCS superconductor the spectrum of low energy vortex core states is largely determined by the geometric optics limit of Andreev reflection. We use this to follow the evolution of the states when a stationary vortex is immersed in a transport supercurrent. If the core spectrum were continuous, spectral flow would convert the momentum flowing into the core via the Magnus effect into unbound quasiparticles --- thus allowing the vortex to remain stationary without a pinning potential or other sink for the inflowing momentum. The discrete nature of the states, however, leads to Bloch oscillations which thwart the spectral flow. The momentum can escape only via relaxation processes. Taking these into account permits a physically transparent derivation of the mutual friction coefficients.Comment: Plain TeX, 19 pages, 5 encapsulated postscript figure

    Gauge Theories with Cayley-Klein SO(2;j)SO(2;j) and SO(3;j)SO(3;j) Gauge Groups

    Get PDF
    Gauge theories with the orthogonal Cayley-Klein gauge groups SO(2;j)SO(2;j) and SO(3;j)SO(3;{\bf j}) are regarded. For nilpotent values of the contraction parameters j{\bf j} these groups are isomorphic to the non-semisimple Euclid, Newton, Galilei groups and corresponding matter spaces are fiber spaces with degenerate metrics. It is shown that the contracted gauge field theories describe the same set of fields and particle mass as SO(2),SO(3)SO(2), SO(3) gauge theories, if Lagrangians in the base and in the fibers all are taken into account. Such theories based on non-semisimple contracted group provide more simple field interactions as compared with the initial ones.Comment: 14 pages, 5 figure
    • …
    corecore